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Abstract

Woody plants native to mesic habitats tend to be more vulnerable to drought-induced cavitation than those in xeric

habitats. Cavitation resistance in herbaceous plants, however, is rarely studied and whether or not annual plants in

arid habitats conform to the trends observed in woody plants is unknown. This question is addressed by comparing

the hydraulic properties of annual plants endemic to relatively mesic and seasonally xeric habitats in the Great Basin

Desert, in both native and experimental settings. Vulnerability to cavitation between species differed as predicted

when vulnerability curves of similar-sized native individuals were compared. Contrary to expectations, Helianthus
anomalus from the relatively mesic dune sites, on average, exhibited higher native embolism, lower soil-to-leaf

hydraulic conductance (kL) and lower transpiration rates, than its xeric analogue, H. deserticola. In transplant

gardens, H. anomalus’ vulnerability to cavitation was unaffected by transplant location or watering treatment. In

H. deserticola, however, vulnerability to cavitation varied significantly in response to watering in transplant gardens

and varied as a function of stem water potential (Wstem). H. deserticola largely avoided cavitation through its higher

water status and generally more resistant xylem, traits consistent with a short life cycle and typical drought-escape

strategy. By contrast, H. anomalus’ higher native embolism is likely to be adaptive by lowering plant conductance

and transpiration rate, thus preventing the loss of root-to-soil hydraulic contact in the coarse sand dune soils. For H.
anomalus this dehydration avoidance strategy is consistent with its relatively long 3–4 month life cycle and low-

competition habitat. We conclude that variance of hydraulic parameters in herbaceous plants is a function of soil

moisture heterogeneity and is consistent with the notion that trait plasticity to fine-grained environmental variation

can be adaptive.
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Introduction

For woody species, the observation that plants from mesic

habitats are more vulnerable to drought-induced xylem

cavitation than plants from xeric habitats holds at broad

spatial scales and in evolutionary frameworks (Alder et al.,

1996; Mencuccini and Comstock, 1997; Davis et al., 1999;

Kolb and Sperry, 1999; Pockman and Sperry, 2000;
Maherali et al., 2004). However, recent work by Jacobsen

et al. (2007) showed that aridity does not always predict

cavitation resistance in woody shrubs, and while some

species in a semi-arid climate had high cavitation resistance,

the dominant species in an arid desert community were,

on average, less resistant to drought-induced cavitation. In

annual and herbaceous plants, drought-induced xylem

cavitation is poorly described and whether or not herba-
ceous annuals from mesic habitats are more vulnerable

to cavitation than those from xeric habitats is an open
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question. This is surprising given that many annual crops

are grown in non-irrigated and dryland ecosystems. Of the

studies that have examined vulnerability to drought-induced

xylem embolism and cavitation in herbaceous species

(Milburn and McLaughlin, 1974; Tyree et al., 1986; Neufeld

et al., 1992; McCully et al., 1998; Buchard et al., 1999;

Stiller and Sperry, 2002; Kocacinar and Sage, 2003; Stiller

et al., 2003; Lo Gullo et al., 2004; Li et al., 2009) few have
been completed in the field, particularly in arid ecosystems,

where water availability varies in space and time.

Because vulnerability to cavitation has a genetic basis,

species and population differences in cavitation resistance

can be due to adaptive or ecotypic differentiation (Neufeld

et al., 1992; Kavanagh et al., 1999; Kolb and Sperry, 1999;

Maherali et al., 2004). In addition, gene flow or phenotypic

plasticity among populations may alter adaptive or ecotypic
differentiation (Maherali et al., 2002). Vulnerability to

cavitation is also an environmentally plastic trait such

that drought induced stress can temporarily diminish or

‘weaken’ xylem resistance to cavitation (i.e. a rapid loss of

xylem conductivity at relatively high water potentials). This

‘cavitation fatigue’ phenomenon, which has been demon-

strated in a few genera including Helianthus (Hacke et al.,

2001), complicates interpretations of field-based measures
of cavitation resistance. Evidence suggests that plants may

take several days to regain previous cavitation resistance

levels following drought stress (Stiller and Sperry, 2002).

The implication is that, in desert habitats which have

spatially and temporally heterogeneous moisture availabil-

ity, vulnerability to cavitation could change seasonally for

a given individual. Recently, Jacobsen et al. (2007) demon-

strated that cavitation resistance changed in ‘wet’ versus
‘dry’’ seasons in several woody species in the Chaparral,

Coastal scrub, and Mojave Desert scrub habitats. Therefore

both genetic and environmental effects need to be consid-

ered when comparing vulnerability to cavitation within and

among species.

In order to clarify how variation in water availability

affects drought-induced cavitation in herbaceous taxa, two

species of wild desert sunflowers, Helianthus anomalus and
Helianthus deserticola, were studied. They are an excellent

species pair to investigate the relationship between hydrau-

lic parameters and habitat water status in desert annuals

because they are closely related (Rieseberg, 1991; Rieseberg

et al., 1991) and can be found in adjacent but divergent

habitats that are well characterized (Schwarzbach et al.,

2001; Rosenthal et al., 2005; Donovan et al., 2007).

The species are locally endemic to active sand dunes
(H. anomalus) and the adjacent stabilized dunes and desert

floor (H. deserticola) in the Great Basin Desert, USA.

Helianthus anomalus is relatively long-lived for a desert

annual, germinating in the early spring and remaining active

until the first frost in late autumn, presumably an adapta-

tion to the relatively mesic dune habitat. However, in

the stabilized off-dune habitat, plant water availability

decreases rapidly during summer droughts (Rosenthal
et al., 2005) and H. deserticola completes its life cycle within

2 months.

The sand dunes habitat of H. anomalus has significantly

coarser textured soils than the adjacent stabilized dunes

where H. deserticola thrives (Rosenthal et al., 2005). Soil

texture is relevant here since hydraulic failure can occur in

the soil before xylem cavitation, either due to coarse-

textured soil or to the low surface area of the absorbing

roots (Sperry et al., 1998; Hacke et al., 2000). Therefore,

edaphic differences between these habitats may differen-
tially affect soil and plant water status (Rosenthal et al.,

2005) and this, in turn, would affect plant hydraulic

properties. In general, the dune habitat of H. anomalus is

considered to be relatively mesic for the entire growing

season since soil moisture is available to plants throughout

the summer provided their roots are deep enough

(Rosenthal et al., 2005). In addition, nutrient availability is

also significantly lower in H. anomalus (Ludwig et al., 2006).
While the species in our study have identical hybrid origins,

different suites of traits have facilitated ecological transi-

tions in these sunflowers (Rieseberg et al., 2003) and it is

unknown how hydraulic parameters may contribute to the

ecological differentiation.

In the present study, the hypothesis that the ‘on-dune’

species H. anomalus is more vulnerable to drought-induced

xylem cavitation, than the ‘off-dune’ species H. deserticola

was tested. This was done by measuring vulnerability to

cavitation, native embolism, transpiration rate (E), predawn

(Wpd) and midday (Wmd) water potential, soil-to-leaf hy-

draulic conductance (kL), and related hydraulic parameters

in native plants during two summer growth seasons. In a

second experiment, seedlings of each species were removed

from native populations and reciprocally transplanted into

common gardens in each of their respective habitats. Within
each transplant garden, half the plants received additional

water. It was hypothesized that resistance to cavitation

would vary in response to water availability. If variance in

vulnerability to cavitation for either species is an environ-

mentally plastic trait driven by water availability then

cavitation was expected to differ in watered versus unwa-

tered treatments.

Materials and methods

Study site

The study was conducted in the Little Sahara Recreation Area,
Juab County, Utah (latitude 39o44’ N, longitude 112o18’ W). The
climate is typical of the Great Basin Desert with the majority of
precipitation occurring as snow or rain during the cold winter and
cool spring months. The summers are characterized by a significant
drought usually beginning in June and July. Mean annual pre-
cipitation is 312 mm, making this an arid zone according to the
UNESCO (1977) classification. During the two years preceding the
common garden study, annual precipitation was well below
average (2002, 110 mm; 2001, 191 mm) compared to 317 mm in
an average year (Rosenthal et al., 2005), reflecting a significant
long-term drought in the area. Annual precipitation was slightly
below average (287 mm) in 2003, the year of the common garden
study, with 20% (58 mm) falling during the summer study period
(June-August) (Fig. 1).
The dominant vegetation at this site has been described pre-

viously (Rosenthal et al., 2005). Briefly, cover is significantly lower
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on-dunes (12.3%) than off-dunes (67.8%) the most common species
on dunes are Psoralidium lanceolatum (Pursh) Rydb. (Dune
scurfpea), Salsola tragus L. (Russian thistle), and Achnatherum
hymenoides (Roem. & Schult.) Barkworth (Indian ricegrass).
Common taxa off the dunes are Bromus tectorum, Artemisia
tridentata var. tridentata, and several Agropyron sp. The pro-
portion of soil covered by litter is also far lower on-dunes than off
(6.4% versus 45.5%, respectively). The vast majority of off-dune
litter was identifiable as B. tectorum (Rosenthal et al., 2005).

Sampling of native plants

In the first year of our study, native plants of both species were
collected simultaneously on two dates (July 2002 and August 2002).
In the second year, plants of similar sizes and growth stages (i.e. at
anthesis) were collected on two separate dates. H. deserticola plants
were collected in July 2003 and H. anomalus plants were collected
in August 2003 to coincide with measurements taken in the
reciprocal transplant gardens as described below.

Reciprocal transplant experiment

Reciprocal transplant gardens were established in the H. anomalus
and H. deserticola habitats in the Little Sahara Recreation Area,
Juab County, UT, USA (latitude 39�44’ N, longitude 112�18’ W)
(hereafter referred to as ‘on-dune’ and ‘off-dune’, respectively).
One-hundred-and-twenty-five H. anomalus and H. deserticola
seedlings were collected between 25 May and 27 May 2003 from
naturally occurring populations at Little Sahara Sand Dunes.
Individual plants were placed in temporary pots and 48 seedlings
per species were randomly selected for the experiment. Half of the
selected seedlings from each species were planted in the on-dune
garden and off-dune garden, respectively. Within each transplant
garden there were two irrigation treatments, watered (+H2O) and
unwatered (NO H2O). The +H2O and NO H2O plants were in
separate plots so that water additions would not affect control
plants. To account for any heterogeneity within treatments, 2
blocks were nested within each treatment plot.
All plants were watered every other day for 14 d following the

transplant. Previous studies indicated that this initial period of
heavy watering would be necessary to minimize transplanting
shock and facilitate seedling establishment (Ludwig et al., 2004).
Four weeks after transplanting, the +H2O plants were supple-
mented with water equivalent to 33 mm of precipitation. Since it
was not possible to know in advance what precipitation would
occur, the average precipitation expected for that seasonal period
(ten year average¼35 mm) was added. The actual precipitation
during the study was 22.4 mm. Therefore +H2O plants received
55.4 mm precipitation (about 20.4 mm more than the average for

that period), which was administered four times at two-week
intervals.
Helianthus deserticola blooms, sets seed, and frequently senesces

before H. anomalus begins flowering. In order to compare
cavitation resistance at similar growth stages in the experimental
garden plants, H. deserticola was harvested and measured on
17 July and H. anomalus on 28 August. At these dates, both plants
had terminated height growth and had initiated flowering.

Cavitation resistance and native embolism measurements

Vulnerability to xylem cavitation was quantified from curves based
on the relationship between xylem pressure and the percentage loss
of hydraulic conductivity (PLC) (Sperry et al., 1988; Alder et al.,
1997). Hydraulic conductivity of stem segments was measured
using a modification of the method of Sperry et al. (1988) from
the flow rate of deionized and filtered (0.2 lm) water onto an
electronic balance (BA210S, Sartorius, Goettingen, Germany).
Whole plants were collected in the field, immediately sealed into
humid plastic bags to minimize desiccation, and placed in coolers
for the 2 h journey to the laboratory at the University of Utah.
Several studies have shown that this treatment neither affects the
level of native embolism nor the plants’ vulnerability to xylem
cavitation. In the laboratory, 0.14 m stem segments were cut from
the main stem of each plant underwater and then the native
hydraulic conductivity (knative) of each stem was measured using
a pressure head of 4–6 kPa. The stems were flushed at 100 kPa for
45 min to refill air-filled conduits to determine the stem maximum
hydraulic conductivity (kmax). Native embolism or native per cent
loss of conductivity (PLC native) is given by:

PLCnative¼ ððkmax�knative
�
=kmax

�
3100

Once knative and kmax were known, the stem segments were
mounted in custom-built centrifuge rotors and spun for 4 min in
a Sorval RC5C centrifuge to generate xylem embolisms. Xylem
pressure is a function of the angular velocity and the distance from
the centre of rotation to the stem ends, with the lowest pressures at
the centre of the stem (Alder et al., 1997). After spinning, stem
hydraulic conductivity was remeasured. This process was repeated
several times, spinning at incrementally higher speeds. Vulnerabil-
ity curves were then derived from the plots of PLC versus xylem
pressure.
Differences in cavitation resistance are frequently presented as

the pressure required to cause a 50% loss of hydraulic conductivity
(P50). However, sunflowers have been shown to suffer from
‘cavitation fatigue’ (Hacke et al., 2001; Stiller and Sperry, 2002)
and minor xylem tensions of only –1.0 MPa can cause a dramatic
decrease in hydraulic conductivity. This shift is particularly
prominent at the less negative (–1 or greater MPa) pressure end
of the vulnerability curve. In order to correct vulnerability curves
for cavitation fatigue it is not sufficient to use the conductivity
at –0.5 MPa as the kmax. Therefore, to avoid confounding the
effects of xylem weakening with inherent cavitation resistance,
cavitation resistance at 75 PLC (P75) was compared as well as at
50 PLC (P50) (Sperry and Hacke, 2002).

Water relations and gas exchange measurements

Prior to harvesting plants for hydraulic measurements, plant
predawn (Wpd) and midday (Wmd) water potentials were de-
termined with a pressure chamber (PMS instruments, Corvallis,
Oregon, USA). Only fully expanded, mature, non-senescent leaves
were used. Although soil W and plant Wpd may not equilibrate for
some plants (Donovan et al., 2001, 2003), night-time transpiration
is similar and relatively low in H. anomalus and H. deserticola
(Howard and Donovan, 2007). Therefore any deviation from
equilibrium with soil W would have small and similar effects on
plant W. Immediately following or preceding Wmd, transpiration
rate (E) was measured on mature non-senescent leaves using a
Li-Cor 6400 portable photosynthesis system (CO2 concentration
360 ppm, ambient air temperature, photosynthetically active

Fig. 1. Mean monthly precipitation at Little Sahara Sand Dunes for

May through September of 2002 and 2003.
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radiation 1800 lmol m�2 s�1). Transpiration measurements were
done on clear days between 11.00 h and 13.00 h at similar air
temperatures and VPD. Prior to measurement, ambient relative
humidity and temperature were recorded and chambers were set to
mimic ambient conditions.
Soil-to-leaf hydraulic conductance (kL) was calculated using the

following equation:

kL¼ E=ðwpd�wmdÞ

where kL is defined by the ratio between flow rate (i.e.
transpiration) and the ‘driving force’ (Kolb and Davis, 1994)
defined by the difference between soil and leaf water potential.
Field stem xylem pressure (Wstem) was estimated as the midpoint
between (Wpd) and (Wmd):

wstem¼ ðwpdþwmdÞ=2

which corresponds to the xylem pressure at the midpoint of the
soil-to-leaf continuum (Linton et al., 1998) and is considered
a better estimate of the xylem pressure in the shoots used to
measure cavitation resistance.
After determining Wstem, the safety margin against hydraulic

failure was calculated. Plant Wcrit is defined here as a conservative
estimate of the minimum Wstem allowing xylem transport (see also
Pockman and Sperry, 2000). If Wstem were to reach Wcrit, all
hydraulic transport would cease (i.e. 100% loss of hydraulic
conductivity). The difference between the Wmin and Wcrit is
considered the margin of safety against hydraulic failure (Sperry
et al., 1998). The safety margin for mesic species is generally small
because water availability is usually high and predictable in those
habitats. This margin is wider for species in arid habitats,
presumably allowing plants to extract soil water at lower water
potentials (Sperry, 1995). W at P75 was conservatively selected as
Wcrit and Wmd as Wmin. The safety margin (Wmargin) was calculated
as the difference between Wcrit and Wmd.

Sampling and statistical methods

The pressure causing 50% and 75% loss in xylem conductivity (P50
and P75, respectively) was estimated for native and experimental
populations by fitting a Weibull function to loss of hydraulic
conductivity versus xylem tension for each individual stem
(Neufeld et al., 1992). Both, P75 and P50 were estimated since the
former is less likely to be affected by drought-induced cavitation
fatigue than the latter (Sperry and Hacke, 2002).
To test for overall differences in vulnerability curves between

species in the native habitat, the response of per cent loss of stem
conductivity (PLC) to change in xylem pressure (MPa) was
modelled using a repeated measures analysis of variance (SAS,
PROC GLM) with species as a fixed effect and xylem pressure as
the repeated effect. For the reciprocal transplant experiment the
ANOVA was done by species as we were primarily interested in
the species response to watering, treatment (i.e. +H2O versus NO
H2O) and habitat (i.e. on-dune and off-dune) were treated as fixed
effects, and block nested within habitat was treated as a random
effect (SAS, PROC MIXED). To compare between species across
all experiments species summary statistics were generated and
tested for significance of species level differences by comparing the
measured values of Wpd, Wmd , Wstem, E, kL,native embolism, P50,
P75, and Wmargin between species with a MANOVA (PROC GLM
option MANOVA).

Results

Native plants

In 2002, vulnerability curves were measured for both species

in July and then again in August to assess seasonal

variation. Within each species, entire vulnerability curves

differed between sampling dates in 2002 when compared

using repeated measures ANOVA (PROC MIXED,

(H. deserticola F1,37¼10.6, P <0.01; H. anomalus;

F1,29¼5.38, P <0.05) (Fig. 2). Within sampling dates in

Fig. 2. Percent loss of hydraulic conductivity (PLC) as a function

of xylem pressure for H. anomalus and H. deserticola plants

collected in native habitats in 2002 and 2003 (Experiment 1).

Sampling dates in 2003 were determined by the plants’ growth

stage (July for H. deserticola and August for H. anomalus). Larger

symbols (n¼4–7 stems at each xylem pressure 6SE) are adjusted

means from repeated measure ANOVA. Smaller symbols with

horizontal error bars represent mean P75 (+SE) as estimated from

Weibull curves for each stem. Curves are Weibull functions fitted to

the entire data set of each species at that time point. Asterisks

denote means that are significantly different following post hoc

tests.
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2002, species vulnerability curves differed significantly in

July (F1,26¼20.86, P <0.001) but not August. In 2003, native

plant vulnerability curves differed significantly (F1,48¼12.01,

P <0.005) (Fig. 2), but these were sampled at different

times. Curves did not differ between years for a species,

based on a comparison of the August data for H. anomalus

and the July data for H. deserticola. The P75 was also less

negative for H. anomalus than H. deserticola, but only
significantly so in 2002. Overall, H. deserticola exhibited

greater variability and range in susceptibility to xylem

cavitation than did H. anomalus (Table 1). H. anomalus

tended to be more vulnerable to cavitation and its water

potential dropped much more during the summer (Wmd

below –2 MPa) than H. deserticola (Wmd near –1.5 MPa;

Fig. 3). Consequently, H. anomalus developed higher

native embolism values at the end-of-summer August
sampling dates in 2002 (39.268.9%) than H. deserticola

(19.0612.0%).

Reciprocal transplants

Helianthus anomalus cavitation resistance in experimental

gardens did not differ significantly by garden (on-dune and

off-dune), treatment (+H2O or No H2O) or their interaction
when entire vulnerability curves were compared by repeated

measures ANOVA (Table 2; Fig. 4). Nor were there

any differences in P75. However, on-dune and off-dune,

H. anomalus +H2O (Fig. 3; ANY and AFY) had signifi-

cantly greater Wpd and Wmd than H. anomalus No H2O

(ANN and AFN) indicating their water status improved

with additional watering (Table 3; Fig. 3).

In contrast to the low variability in cavitation resistance
for H. anomalus in the gardens, H. deserticola’s resistance to

cavitation in transplant gardens differed significantly be-

tween on-dune and off-dune gardens based on whole-curve

ANOVA comparisons and P75 data. The magnitude of the

difference varied depending on watering treatment (Table 2;

Fig. 4). In the off-dune transplant garden H. deserticola was

significantly less vulnerable to cavitation only when watered

(Fig. 4) and both Wpd and Wmd were significantly greater in
the off-dune gardens (Table 3; Fig. 3).

Species trends

To compare species’ hydraulic parameters response to plant

water status in the broadest sense, data from native and

experimental garden plants were combined and compared

to Wstem (i.e. [(Wpd +Wmd)/2], Fig. 5). Overall, H. anomalus

developed significantly lower water potentials and higher

native embolism than H. deserticola (Fig. 5A; Table 4).
Consequently, H. anomalus had, on average, an approxi-

mately three times lower soil-to-leaf hydraulic conductance

(kL) than H. deserticola and a similarly lower average

transpiration rate (Fig. 5B, C; Table 4).

The P75 exhibited a significant relationship with Wstem in

H. deserticola, such that plants exposed to more negative

Table 1. Mean and range of xylem pressure at 75% loss of

hydraulic conductivity (P75)

P75 was estimated for each individual then pooled for all native H.
anomalus and H. deserticola collected in 2002 and 2003. Species
means differ significantly in 2002 but are not significant in 2003. Note
that native plants were sample at the same time in 2002 but not in
2003. See Materials and methods for details.

Species
(year)

n Mean Standard
error

Minimum Maximum Variance

2002 (*)

H. anomalus 9 –2.663 0.133 –3.45 –2.15 0.142

H. deserticola 9 –3.421 0.250 –4.80 –2.90 0.438

2003 (ns)

H. anomalus 8 –2.838 0.189 –3.65 –2.15 0.287

H. deserticola 12 –2.817 0.173 –3.90 –2.00 0.359

Table 2. Repeated measures analysis of variance for the effects

of habitat (on-dune and off-dune) and treatments (+H2O and NO

H2O) and xylem pressure (MPa) on per cent loss of hydraulic

conductivity (PLC) in common garden transplants of H. anomalus

and H deserticola

Note that H. deserticola plants were sampled in July and H.
anomalus plants were sampled in August 2003.

Effect Ndf H. anomalus H. deserticola

Ddf F P Ddf F P

Habitat 1 70 0.06 0.8082 61 12.09 0.0009

Treatment 1 70 2.63 0.109 61 0.36 0.5505

Habitat3Treatment 1 70 2.57 0.1135 61 7.56 0.0078

MPa 5 70 99.08 <0.0001 61 57.64 <0.0001

MPa3Garden 5 70 0.39 0.8555 61 0.66 0.6515

MPa3Treatment 5 70 0.46 0.8019 61 0.88 0.5019

MPA3Garden3Treatment 5 70 0.06 0.9974 61 0.22 0.9523

Table 3. ANOVA results for leaf predawn (Wpd) and midday (Wmd)

water potential for the same plants that were used to generate

vulnerability curves in the common garden 2003 (see Fig. 2)

H. deserticola individuals were sampled in July and H. anomalus in
August, habitat (on-dune versus off-dune) and treatments (+H2O and
NO H2O)

H. anomalus Wpd Wmd_

df F P df F P

Habitat 1 0.17 0.69 1 0.72 0.42

Treatment 1 23.28 <0.005 1 35.31 <0.001

Habitat3Treatment 1 0.01 0.94 1 0.2 0.67

Block (Habitat3Treatment) 4 6.9 <0.05 4 8.23 <0.01

Error 8 8

H. deserticola Wpd Wmd_

df F P df F P

Habitat 1 18.08 <0.005 1 11.4 <.01

Treatment 1 0.53 0.49 1 0.40 0.55

Habitat3Treatment 1 0.1 0.76 1 1.72 0.23

Block (Habitat3Treatment) 4 0.34 0.84 4 1.30 0.36

Error 7 7
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xylem pressure tended to be more resistant to cavitation.

There was no correlation between Wstem and P75 in

H. anomalus in spite of its much wider range of Wstem

(Fig. 5D). When all native and experimental plants were

pooled, the mean P50 was significantly higher (more

vulnerable) in H. anomalus (2.1660.1 versus 2.6760.1 MPa;
P <0.01) than in H. deserticola (Table 4). Differences in P75

followed similar trends with H. anomalus being more

vulnerable than H. deserticola, but these differences were not

statistically significant (2.9860.09 versus 3.1760.1; P >0.05).

Discussion

In support of our hypothesis native H. anomalus plants
were significantly more vulnerable to cavitation than

H. deserticola when similar-sized native plants were sampled

early and late in the growth season of 2002. This trend held

for P50 and P75 but was not significant for the latter when

all plants were pooled. Helianthus anomalus plants have

a smaller margin of safety (i.e. P75–Wmd) than H. deserti-

cola (1.08 MPa versus 1.79 MPa) consistent with the notion

that the active on-dune habitat is mesic relative to off-dune
habitats (Rosenthal et al., 2005). A wider safety margin is

more typical of xeric species as a hedge against variable soil

moisture (Sperry, 1995). By contrast, and contrary to our

expectations, H. anomalus experienced more than twice the

native embolism of H. deserticola (25% versus 10%) which

caused H. anomalus to operate at lower W, and to have

roughly a three times lower soil-to-leaf hydraulic conduc-

tance than H. deserticola. This was especially true when
the native embolism of native plants was compared at

similar times in 2002 (39.268.9% versus 19.0612.0%) for

H. anomalus and H. deserticola, respectively.

Why would H. anomalus maintain a relatively high native

embolism in spite of being in the putatively more mesic

habitat? It is well known that the root–soil interface is

especially vulnerable to severe desiccation in coarse soils

where water is easily displaced by air in the large pore

spaces (Bristow et al., 1984; Hacke et al., 2000). Previously,

it was demonstrated that soil W decreases precipitously as

a function of water content in these dune habitats
(Rosenthal et al., 2005). In spite of this, native plant water

status remains high in this dune habitat relative to adjacent

off-dune habitats (Rosenthal et al., 2005) presumably

because plants in coarser soils have deep roots that are able

to mine soil moisture. This has been shown for woody

species, which developed deeper roots in coarse textured

soils to reach wetter soils (Hacke et al., 2000; Jackson et al.,

2000; Sperry and Hacke, 2002). We have previously argued
that H. anomalus can maximize access to soil moisture by

having deep roots (Ludwig et al., 2004; Donovan et al.,

2007, 2009). However, a recent study has shown that, while

native H. anomalus did have some deep roots (>130 cm

deep), more than 88% of its root biomass can be in the top

25 cm of soil (Ludwig et al., 2006). The significant increases

in Wpd in the watered (+H2O) H. anomalus transplant

garden are consistent with this observation and suggest that
H. anomalus may not always have the capacity to develop

a sufficiently extensive deep root system to meet its water

requirements. As a result, higher native embolism in

H. anomalus would decrease the rate of water consumption

by lowering hydraulic conductivity and transpiration,

extending the time of hydraulic contact between water in

the coarse soil and the root system (Sperry et al., 1998).

This makes adaptive sense on the dunes because low plant
cover means inter-specific competition is minimal. This

resource conservation strategy is consistent with the notion

that H. anomalus’ adaptation to the dune habitat consists of

a dehydration avoidance and stress tolerating strategy

(Brouillette et al., 2006; Donovan et al., 2009).

Fig. 3. Summary of leaf W for H. anomalus and H. deserticola. Data for native plants Experiment (1), and the two transplant garden

experiments (Experiment 2) are separated by a solid black line. The first letter of all abbreviations refer to species (H. anomalus¼A and H.

deserticola¼D) and for Experiment 1 the month and year are noted. For Experiment 2, the second and third letters refer to treatments:

off-dune and NO H2O (¼FN); off-dune and +H2O (¼FY); on-dune and +H2O (¼NY); on-dune and NO H2O (¼NN). Bars are means

(n¼4–7 for Experiment (1) and n¼4 for Experiment (2) 6SE). Standard errors are based on a pooled estimate of the error variance for

a one-way ANOVA. Note that H. deserticola transplant data were collected in July 2003 and H. anomalus transplant data were collected

in Augusr 2003.
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Interestingly, our results revealed that both species

suffered from ‘cavitation fatigue’ (Hacke et al., 2001; Stiller

and Sperry, 2002). However, this apparent increase in

cavitation vulnerability at less negative xylem pressures was

much more pronounced in H. anomalus, which also was

able to recover from it (compare 60% embolism at –1 MPa

in July 2002 versus 30% embolism at –1 MPa in August 2002;
Fig. 2). In order to avoid confounding the effects of cavitation

fatigue with inherent cavitation resistance, cavitation resis-

tance at 75% embolism (P75) as well as at 50% embolism

(P50) were compared (Sperry and Hacke, 2002).

A growing body of work suggests that temporal or

ontogenetic changes in physiology or morphology in re-

sponse to fine grained environmental variation can be

adaptive (Winn, 1999; Miner and Vonesh, 2004; Picotte
et al., 2007; Maherali et al., 2009). H. deserticola showed

significantly more variability both within and between

curves than H. anomalus, evidence of a greater plasticity in

cavitation resistance. The variance in H. deserticola’s

hydraulic parameters was correlated with Wstem, such that

Fig. 5. Native embolism (PLC) (A), soil-to-leaf hydraulic conduc-

tance (B), transpiration (C), and P75 (D) for native and transplanted

H. anomalus (black symbols, solid lines) and H. deserticola (white

symbols, dashed lines) as a function of stem W. Symbols are

values for individual plants and 95% confidence intervals are only

shown for regressions that are significant.

Fig. 4. Percent loss of hydraulic conductivity as a function of

xylem pressure for H. anomalus and H. deserticola in Experiment

(2) in on-dune (circles) and off-dune gardens (triangles) subjected

to additional water (+H2O) or no additional water (NO H2O). Curve

data were collected in July 2003 for H. deserticola and in August

2003 for H. anomalus when plants were at a comparable growth

stage. Smaller symbol with horizontal error bars represent mean

P75 (+SE) as estimated from Weibull curves for each stem.
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plants experiencing lower Wstem also had lower P75 (Fig. 5).

For instance, in 2002 with a meagre 9 mm of precipitation

in July and August, H. deserticola had significantly lower

P75 than H. anomalus but this was not the case in 2003

when July and August precipitation was much greater

(27.4 mm). This makes adaptive sense for a cavitation-

avoiding species like H. deserticola. Avoidance of cavitation
by H. deserticola by maintaining a more cavitation-resistant

xylem in drier times would contribute to its higher soil-

to-leaf hydraulic conductance and transpiration rates. These

traits may be beneficial in its higher-cover habitat with

greater potential for inter-specific competition, higher soil

moisture heterogeneity, and, where finer-textured soils

permit, a higher rate of water uptake per root area. The

drought-escaping strategy is also consistent with its short
1–2 month life cycle. In sharp contrast, H. anomalus did not

show any adjustment in P75 with Wstem, consistent with

a strategy of maintaining a consistently higher level of

native embolism regardless of stem W.

Three commonly described general drought adaptations

are dehydration tolerance, dehydration avoidance, and

drought escape (used here as defined by Ludlow, 1989). So

what drought-adaptation strategies apply to these desert
annuals? If H. deserticola is a cavitation-avoiding drought

escapist, then H. anomalus is an embolism-maintaining

dehydration avoider. Desert annuals are frequently charac-

terized as drought escapists, however, a growing number of

studies of functional traits in annuals have shown that

annual species exhibit a range of adaptations from de-

hydration avoidance to dehydration escape (Geber and

Dawson, 1990, 1997; Stanton et al., 2000; McKay et al.,
2003; Heschel and Riginos, 2005; Sherrard and Maherali,

2006). Helianthus deserticola’s increasing resistance to xylem

cavitation in response to decreasing water availability

ensures that it will maintain hydraulic continuity at a greater

range of soil water potentials even at higher transpiration

rates. Thus, H. deserticola maximizes the length of time

that resources are favourable consistent with the idea that

annual drought-escapers may only reap fitness benefits

when resources are favourable (Sherrard and Maherali,

2006). This is consistent with Donovan et al. (2007) in that

higher fitness is not always associated with direct selection

for lower water use efficiency in native H. deserticola

populations (Donovan et al., 2007, 2009). By contrast,

H. anomalus persists throughout the summer growing
season and continues flowering until late in the autumn. If,

as mentioned earlier, H. anomalus does not always have an

extensive deep root system it may avoid dehydration by

maintaining high native embolism and low transpiration

rates. Indeed, a recent study suggested that nutrient

limitation, not water use efficiency, appears to have been

the driving selective force on H. anomalus populations

(Donovan et al., 2009).
There still remains unexplained variation in cavitation

resistance in these species, suggesting other factors beyond

the scope of this study, such as root cavitation, variance in

growth rate, and nutrient status, all with potential influen-

ces on the cavitation phenotype. Ultimately, the cavitation

phenotype in herbaceous and woody species appears to be

a complex function of inter-vessel pit structure and number

(Hacke et al., 2004; Sperry and Hacke, 2004) the details of
which need to be more fully studied.
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